

Date Planned ://	Daily Tutorial Sheet - 5	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level - 1	Exact Duration :		

101.	20 persons are invited for a party. In how many different ways can they and the host be sea	ated at circular
	table, if the two particular persons are to be seated on either side of the host?	

(A)

20

 2×18 **(B)**

(C)

18

(D)

None of these

102. In how many ways a garland can be made from exactly 10 flowers?

(A)

10

(B) 9 (C)

2|9

(D) |9/2|

103. There are n numbered seats around a round table. In how many ways can m < n persons sit around the round table. (\mathbf{r})

 ${}^{n}C_{m} \cdot m!$ (A)

(B) ${}^{n}C_{m} \cdot (m-1)!$ **(C)** $\frac{{}^{n}C_{m} \cdot (m-1)!}{2}$ **(D)**

None of these

104. A cabinet of ministers consists of 11 ministers, one minister being the chief minister. A meeting is to be held in a room having a round table and 11 chairs round it, one of them being meant for the chairman. The number of ways in which the ministers can take their chairs, the chief minister occupying the chairman's place, is:

 $\frac{1}{2}(10!)$ (A)

(B)

10!

(D)

105. The number of ways in which 7 men and 6 women can dine at a round table, if no two women are to sit (\triangleright) together, is given by:

(C)

(A)

 $6! \times 7!$

(B)

42

9!

(C) $5! \times 6!$ **(D)** $7! \times 5!$

106. The number of ways to give 16 different things to three persons A, B, C so that B gets 1 more than A and C gets 2 more than B, is:

(A)

16! 4! 5! 7!

(B)

4! 5! 7!

(C)

(D)

The number of ways of distributing 10 different books among 4 students $(S_1 - S_4)$ such that S_1 and S_2 107. gets 2 books and S_3 and S_4 get 3 books each is:

(A)

12600

(B)

25250

(C)

 $^{10}C_{4}$

(D)

108. If 3n different things can be equally distributed among 3 persons in k ways, then the number of ways to divide the 3n things in 3 equal groups is:

(A)

 $k \times 3!$

(C)

(3!)k

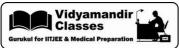
(D)

109. n different toys have to be distributed among n children. Total number of ways in which these toys can be distributed so that exactly one child gets no toy, is equal to:

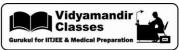
(A)

n!

(B)


 $n!^n C_2$

(C)


 $(n-1)!^{n}C_{2}$

(D) $n!^{n-1}C_2$

3k

110. Number of ways in which a pack of 52 playing cards be diseach may have the Ace, King, Queen and Jack of the same su									
	(A)	$\frac{361! \cdot 4!}{(9!)^4}$	(B)	$\frac{36!}{(9!)^4}$		$\frac{52! \cdot 4!}{\left(13!\right)^4}$	(D)	$\frac{52!}{\left(13!\right)^4}$	
111.	8 different balls have to be distributed among 3 children so that every child receives at least 1 ball, total number of ways to do this is:						ball, the		
	(A)	3 ⁸	(B)	${}^{8}C_{3}$	(C)	8^3	(D)	$3^8 - {}^3C_1 \times 2^8 +$	${}^{3}C_{2}$
112.	The to	tal number of w	ays in w	vhich a beggar o	an be gi	iven at least one	e rupee f	from four 25-pais	sa coins,
	three 5	50-paisa coins a	nd 2 one	-rupee coins, is:					\odot
	(Assun	ne coins of same	type are	e identical)					
	(A)	54	(B)	51	(C)	53	(D)	52	
*113.	The nu	umber of ways in	which 1	10 candidates A	₁ , A ₂ ,	, A ₁₀ can be ra	anked so	that A_1 is alwa	ys above
	A_2 is	:							\odot
	(A)	$\frac{10!}{2}$	(B)	$^{10}C_2 \times 8!$	(C)	$^{10}P_{2}$	(D)	$^{10}C_{2}$	
114.	Let <i>A</i> be the set of 4-digit numbers $a_1 a_2 a_3 a_4$ where $a_1 > a_2 > a_3 > a_4$ then $n(A)$ is equal to:							\odot	
	(A)	126	(B)	84	(C)	210	(D)	120	
115.	Ten pe	ersons, amongst	whom a	A re A , B and C a	re to spe	eak at function.	Find nu	mber of ways in	which it
	can be	done if A wants	to speak	k before <i>B</i> , and <i>E</i>	3 wants t	o speak before (C?		\odot
	(A)	10!	(B)	10!/6	(C)	10!/7!	(D)	10!/2!	
116.	team. A	A number of peo	ple forec	ast the result of allest group of p	each ma	tch and no two	people m	win or loss or drake the same for casts correctly for	ecast for
	(A)	81	(B)	243	(C)	486	(D)	729	
117.	The number of numbers of 9 different non-zero digits such that all the digits in the first four places less than the digit in the middle and all the digits in the last four places are greater than that in middle is:								
	(A)	2(4!)	(B)	$(4!)^2$	(C)	8!	(D)	4!	
118.	same t	chree children to	the zoo		e. She fi	nds that she go	es to the	ean but does not e zoo 84 times m	
	(A)	12	(B)	10	(C)	60	(D)	11	

							Guruk	Vidyamaı Classes sul for IITJEE & Medical Prep.	
119.	A is a	set containir	ng n elemer	nts. A subset P	of A is c	hosen. The s	et A is reco	nstructed by re	eplacing the
	eleme	ents of <i>P. A</i> su	bset Q of A	A. is again chos	en. The n	umber of wa	ys of choosi	ng P and Q so	that $P \cap Q$
	conta	contains exactly two elements is:							\odot
	(A)	$9 \cdot {}^{n}C_{2}$	(B)	$3^{n} - {}^{n}C_{2}$	(C)	$2 \cdot {}^{n}C_{n}$	(D)	$^{n}C_{2}\cdot 3^{n-2}$	
120.	Six X	have to be pl	laced in the	e squares of fig	gure such	that each ro	ow contains	at	
	least	one X. The nu	mber of wa	ys in which thi	s can be	done is: 🕡	\mathbf{c}		
	(A)	25	(B)	26	(C)	27	(D)	30	
121.	A car v	will hold 2 in	the front se	eat and 1 in the	e rear seat	t. If among 6	persons 2 c	an drive, then	the number
	of way	ys in which th	e car can b	e filled is:					\odot
	(A)	10	(B)	40	(C)	30	(D)	20	
122.	A fam	ily consists of	f a grandfat	ther, <i>m</i> sons ar	nd daught	ers and 2n g	randchildrei	n. They are to	be seated in
	a row	for dinner. Tl	he grand-cl	nildren wish to	occupy tl	ne n seats at	each end ar	nd the grandfa	ther refuses

in es to have grand-children on either side of him. In how many ways can the family be made to sit.

- (2n)! m! (m-1)(A)
 - (2n)!m!m(2n-1)!m!(m-1)(2n)!(m-1)!(m-1)(D) (C)
- In a conference 10 speakers are present. If S_1 wants to speak before S_2 and S_2 wants to speak before S_3 , 123. then the number of ways all the 10 speakers can give their speeches with the above restriction if the remaining seven speakers have no objection to speak at any number is:
 - $^{10}C_{3}$ $^{10}P_{3}$ $^{10}P_{o}$ (A)
- 124. The number of ways to fill each of the four cells of the table with a distinct natural number such that the sum of the numbers is 10 and the sums of the numbers placed diagonally are equal, is:
 - $(2!)^3$ 2(4!)**(D)** (A) **(B)** (C) $2!\!\times\!2!$ 4!
- **125**. For a set of five true/false questions, no student has written all correct answers, and no two students have given the same sequence of answers. What is the maximum number of students in the class, for this to be possible?
 - (A) 30 **(B)** 31 (C) 32 (D) 33